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Production Scheduling Based on Order Utility Functions


Yuri Mauergauz

Abstract  This paper presents various aspects of scheduling based on the average orders utility criterion on the planning horizon. In this method the concept of production intensity as a dynamic production process parameter is used.  The example is made for Pareto-optimal flexible job shop scheduling problem, when two criteria were simultaneously used: relative setup expenditure criterion and average orders utility criterion. The nature of average orders utility function variation is considered, and the concept of critical horizon is introduced. The software used allows scheduling for medium quantity of jobs. The result of software application is the set of non-dominant versions proposed to a user for making a final choice. 


1   Introduction


Wide spread occurrence of Just-in-Time Production methodology in scheduling requires to apply the criteria, which explicitly consider possible deviations of contractually agreed due dates. When such approach is used, completing a job earlier or later than its due date deteriorates quality of scheduling. In scheduling theory, an optimality criterion is called regular, if completion time diminution of any job leads to criterion improvement. If a criterion may be improved by increasing planned time of certain job completion, such a criterion is called non-regular. Usually this criterion involves the sum of absolute deviations of job completion timing from due dates; however, as indicated by [1], other criteria are possible.


At the same time, various obstacles, which may exist inside or outside an enterprise, impede exact completion on delivery dates.  Internal causes include machine breakdowns, operator’s absence, design changes, lack of control and so on; the external cause is usually untimely arrival of necessary materials.  Besides, changes in customer requirements to composition and quantity of commodities may be possible.   


Therefore in practice shop floor scheduling is a dynamic process, and its nature essentially impacts production parameters. There are three types of shop control: completely reactive control (dispatching); predictive-reacting scheduling and robust predictive-reacting scheduling.


When dispatching is applied, production schedules are not made. Released jobs are being assigned to machines as they become available, according to the rules used at the enterprise. In this case both job timeliness and job economy are determined by dispatcher’s experience.

A more up-to-date method of shop floor control involves predictive-reacting scheduling of production, which is usually implemented in two stages. At the first stage, the calculation of schedule using certain optimization criteria has to be made. At the second stage, usually already in process of completion, the schedule may be corrected, if important events emerge [14].  In such a case the corrected schedule may differ from the primary one in many respects,

Yuri  Mauergauz


Sophus Group, Moscow, Russia
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and its quality may substantially worsen. In some papers, for example [4], attempts were made to estimate possible production delays and to ensure robust production process in this case.   


When predictive-reacting scheduling is used, two issues arise: when to reschedule, and how to react to real-time events. Three versions of rescheduling policy are possible [14]: periodic, event driven and hybrid. In periodic and hybrid methods the concept of rolling time horizon is used [3]. A planning horizon is a time interval, which contains moments of completion of a job set, for which scheduling is made.  

Duration of rescheduling period is called a planning cycle. Usually it is essentially shorter than a planning horizon. When a planning cycle decreases, the scheduling robustness increases [12], but it becomes difficult to manoeuvre resources, and more reporting is required. Therefore usually the minimal duration of planning cycle is determined by requirements to job organization in the shop. If an event arises within the cycle, which breaks the planning production process, usually the schedule is not fully revised, but the schedule is corrected as needed.  After each cycle the planning horizon is shifted by the value of this planning cycle, but its value will not necessarily remain the same.       


Increase of the planning horizon often makes it possible to apply so called group technology, which unites jobs of the same type, and to enlarge size of technological batches. In this case production expenses related to machine setups drop considerably. However, when the jobs of one type are united, the jobs of other types are delayed. This fact is known as “dilemma of operation planning” [13].  Solution of such problems may be only attained in multicriteria tasks. The most promising here is the research aimed at building Pareto-optimal diagrams for problem criteria.   


It is evident that from the point of view of the best solution for dilemma of operation planning it is necessary to calculate Pareto-front curves on the criteria that depend of job cost and process efficiency. The criterion of relative setup expenses 

[image: image1.wmf]U


  and the criterion of average orders utility 

[image: image2.wmf]V


may be considered for dynamic group scheduling [8]. Average utility for the whole set of orders is calculated as the sum of utility functions   for all planning jobs. The average utility is a non-regular criterion of the above meaning. This paper below demonstrates that application of average utility function makes it possible to determine the rational planning horizon for each scheduling task.


The remainder of this paper is organized as follows. In Section 2 the function of current orders utility and the function of direct expenses are determined.  Section 3 is dedicated to group flexible job shop scheduling.   In Section 4 the choice of rational planning horizon is considered. Section 5 contains some concluding remarks. 


2   Utility functions in scheduling


The customer service level may be assessed by the current order utility function V. From the manufacturer’s point of view, the order value increases proportionately to work amount, since staff engagement increases. Besides, the more is the time reserve for completing an order, the more attractive is the order, since there is an opportunity to prepare for order execution. Eventually the order time reserve is decreasing, and the order value is diminishing. Moreover, if due date has expired, the order value becomes negative.  The manufacturer’s attitude to the order changes with time, and the appropriate function is named production intensity [7]:
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where: 
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 = processing time of job i;  G = plan bucket duration; 
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w


 =  weight coefficient of job i; 
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 = “psychological coefficient”;  
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= due date;     t = current time.
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                                                  Figure 1   Production intensity diagrams     

On abscissa axis in Figure 1 the time reserve is measured. The reserve is equal to subtraction between due date and current time. In the positive part of the diagram (
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) the values of intensity decrease in hyperbolic mode with growth of available time reserve. When the time reserve is negative (
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) and there is delay of order completion, the production intensity linearly increases. Since production intensity is dimensionless, it has no physical sense, but it has psychological sense. Indeed, when this order parameter is rising, the concern about order execution is increasing. Two curves in Figure 1 differ in the psychological coefficient value. The higher is the 

[image: image14.wmf]a


 coefficient, the more placid is the attitude to delays, and the lower is the intensity.  
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                                              Figure 2   Current order utility function


The production intensity concept may be used for determination of the current order utility function V (Figure 2). Assume that the current utility for an order 
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The curve in Figure 2 for the positive value 
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In the negative part  
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If the order due date reserve is positive, the manufacturer expects to gain some profit; if reserve is negative and job execution delays the manufacturer, as a rule, it incurs losses.  There is a great number of papers dedicated to utility changes as a function of available gain or loss. Results of such researches may be reduced to one of two versions depicted in Figure 3. 
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                              Figure 3  Possible diagrams of gain and loss utility


                                    a) diagrams with risk averse and risk prone areas;


                                    b) diagrams only with risk averse area.

On the abscissa axis in Figure 3 the gain value (anticipated profit 
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) is set, on the ordinate axis the gain utility is set in the positive area of the abscissa axis, and the loss utility - in the negative area. The diagram 3a was named an S-mode curve as a result of a well-known research [5] awarded with the Nobel Prize on economics in 2002.  Their research proved inclination of ordinary people to risk, when loss is probable (the left part of the diagram). The left part is concave, so a sign of corresponding second derivative is positive, and there is risk proneness.   

In contrast to the diagram 3a, the diagram 3b shows risk aversion both for gain or loss perspectives. It is necessary to note that the diagram 3b or Grayson-Bard utility function [6] was obtained in 1957, i.e. much earlier than the diagram 3a.  Differences in results of the diagrams 3a and 3b, most probably, were caused by scope people chosen for polling and by direction of money application. In the research by Kahneman and Tversky, modest people were interrogated, money amounts were negligible, and their purpose was consumption. On the contrary, Grayson-Bard function was designed for investments by large companies.   


If we compare the curve in Figure 3 and the curves in Figure 2, we can see that the order time reserve is used as gain or loss. It seems to the manufacturer that the long-term order availability represents a considerable gain, but the rate of this gain growth goes down in proportion to the duration. In this positive field the order utility curve behaves entirely like the diagrams in Figure 3. The negative field in Figure 2 is similar to the loss field in Figure 3, but in contrast to the diagrams in Figure 3 there is linear diminution of order utility function in Figure 2. Accordingly, the function second derivative is equal to zero, and risk is neutral.   


Due to the additivity property of production intensity and order utility function, it is possible to compute the average utility of the whole order set during a plan bucket. The value of this parameter describes timeliness of order completion and may be used as a criterion of scheduling.  

Let us assume that a certain job that corresponds to the node of the scheduling versions tree at the level 
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. Let us also assume that the job k with processing time 
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Possible versions of using the formula (5) for a single machine and rules to compute the    integrals it contains are described in [9]. For some parallel machines the recurrent formula (5) may be used without changes, if completion of a job on the previous level 
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happens before job completion on the subsequent 
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The bottom limit in the integral (6) is the work completion moment for the last job on the machine 
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.  The function of negative expenses utility (loss function) may be used as the second criterion in the dilemma of operation planning. If the sequence number of planning job is 

[image: image37.wmf]n


, then   


                                 

[image: image38.wmf]00


1


[()]


nn


sljkll


ll


UcsctC


c


==


=+-


åå


,                                  (7)                                                                                          

where: c = shift cost;   
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= hour setup cost; 
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= hour idle cost;  
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= moment of job k start after job l completion; 
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= setup time for the next job with the sequence number l in the specific schedule version.


3  Group scheduling for job shop manufacturing


As an example of scheduling based on the proposed criteria, let us consider the task for flexible job shop manufacturing. Assume there are certain jobs arriving in any sequence to each available machine 
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 in one of different pools 
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,  for processing of according type. Every job 

[image: image45.wmf]i


 refers to any of 
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 various types, consists of 
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 operations and has to be completed on due date 
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.  Setting of due dates is specific for “make-to-order” manufacturing strategy.


In accordance with the well-known three-part scheduling classification, the problem to be considered is:
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where: 
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 = designation of flexible job shop manufacturing; 
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 =  due date of job 
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  =  release moment for job 
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 = setup duration for job  

[image: image56.wmf]q


 on machine of pool 
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= requirement of strict sequence of operations for every job.


Let duration of each machine setup from one job to another be independent on sequence of these jobs, which is typical for machine building.  There are two target functions in the formula (8), and they may both be improved only within certain limits. The Pareto compromise curve serves as such limit, because in its points the criterion 
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improvement (diminution) always means the criterion 
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 deterioration (diminution).


If job execution is multistage, the process time of job 

[image: image61.wmf]i


  left before completion consists of process time on 
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where 
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 =    number of the first unfulfilled operation for job  
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Necessary release date of operation 
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where E = duration of a working day.


For solving the problem (8) it makes sense to apply the method based on the MO-Greedy approach [2]. In the greedy algorithm at each step a solution with the best corresponding criterion is selected. In a single-criterion approach a version is selected with the best value of the appropriate criterion.  For multi-object greedy approach the “beam search” with the problem criteria is used. In the current case, there are two criteria: average orders utility 
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 and expenses 
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. For Pareto front determination by beam search the tree with nodes of intermediate solutions is constructed. At the same time at each step some versions of possible solutions that do not dominate each other are selected. The algorithm below is used.


Step 1  (Initial computation of utility functions) 


Let us assume that the level number is 
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=0; the initial expense function value is 
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=0; number of nodes
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External cycle

Step 2  (Determination of possible operations at next levels)


      For each node 
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 of the constructed tree on the level 
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 all possible operations are 


      determined, and   values 
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 are computed by formulas (9,10).


       Intermediate cycle


       Step 3 (Determination of necessary machines at next levels)

              For each operation 
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, which is possible at the moment 
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 and is not yet completed,                 


              the necessary machine pool  is determined.


              Internal cycle

       Step 4 (Utility function computation at next levels)

              For each machine 
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 are 


              computed using the formulas (7) and (5, 6). The moments of machine availability 


             have to be taken into account for computation.


         End of internal cycle


End of intermediate cycle 


 Step 5 (Determination of dominated tree nodes)


If the level 
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 is not last, then for domination on the level 
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       besides, the first or the second inequation is strong. 


      Otherwise: on the last level 
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Step 6 (Transition to the next level or stopping)


If the level is more than the last (all operations are completed), then STOP.


Otherwise: level number increment 
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 and go to Step 2. 


End of external cycle.

As it follows from (11, 12), on each level of tree construction those decisions are thrown aside that are dominated by another decision according to the problem criteria. The last condition in (11) extends the number of possible branches of the decision tree, since it is necessary for domination that the necessary release moment   
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  of non-dominated branch is less than such a moment for dominated one. 


Let us assume that according to a set of available orders the Master plan including several monthly plans is generated for the enterprise. Assume that shop floor planning is based on rolling horizon methodology, and the horizon is equal to some weeks. Then it is necessary for shop floor planning to know Master plan information, at least for two months. Assume the planning cycle is equal to a week, and its result is a shop task for the next week. Since the task for the previous week is not always completed, the shop plan for the next week consists of both the new task and uncompleted jobs of the previous week. In such a case the time reserve for such jobs becomes negative.


For example let us assume that 20 jobs of six various types have to be completed on a planning horizon in a shop. Assume that each job includes from three to five different operations, which have to be performed in any given sequence; assume also that in the shop there are 9 machines of five various pools.  Table 1 contains a fragment of this task consisting 5 jobs.

                                        Table 1   Task fragment 


		Job No.

		Due date

		Release date

		Job type

		Weight coefficient



		

		

		

		

		



		1

		-1

		0

		1

		2



		2

		1

		0

		2

		1



		3

		2

		0

		4

		1



		4

		2

		0

		3

		1



		5

		2

		0

		1

		1





As it follows from Table 1, the job 1 had to be completed one work day earlier than the scheduled start, so there is initial tardiness. Other jobs have to be completed in two days after the start. In this case it is assumed that there is enough material for all jobs at the start moment. For every job the weight coefficient may be put in, which increases job importance. For example, weight coefficient of the job 1 is equal to 2, other coefficients are equal to 1, as a rule.


The calculation result for this example gives three non-dominated versions of schedule, one of them is shown in Figure 4 as a record on MS Excel sheet. Numbers in the sequence for the each machine show the job numbers and (through fraction symbol) – the numbers of the operations, which are performed on the machine. Numbers in brackets form groups of lots with jobs of identical type, which do not require any setup, i.e. technological batch.


[image: image100.png]A B | ¢ 1 D | E | F ]
18 [Machine 1: (8/1,8/1), (10/1, 16/1), (572, 14/1), (1201, 1871)
19 |Machine 2: 211, 372, 13/1, (172, 16/2), 20/1
20 |Machine 3: 311, 6/1, (7/1, 11/1, 161, 4i4), 1303, 17,2, 15/4, 10/3, 2073, 1972
21 |Machine 5: 9/1, (612, 8/2), 1873, 7/3, 1214
22 |Machine B: 14, 472, (272, 912, 1312), (563, 1711), (304, 1202, 1812), 72,
2| (1612, 1072), 1773, (873, 19/1), 15/5, 1045, 2004
24 |Machine 7: B3, 2012, 11/4, 1973
25 |Machine 8: 473, 3/3, 5/4, 1573, 1273, 17/4, 874
26 |Machine 9: (273, 973), 1472, 113, 5/5, (35, 18/4), 6/4, 1265, 17/5, (10/4, 16/3), 85







                    Figure 4: The planning result for one non-dominated versions 


In Figure 5 the Gantt diagrams for the machines 1 and 3 are depicted. Rectangles in the diagrams correspond to working operations, gaps stand for idle time. Thick lines correspond to operations without setups as their job type is the same as the previous one. 
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                                        Figure 5: Gantt diagrams for two machines


Let us consider some parameters of the schedule computed by the method above. Calculated coefficient of average load for engaged machines of the pool 
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The numerator in (13) is equal to total processing time on the machines of pool 
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. The denominator is equal to product of the calculated time reserve in hours 
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According to the scheduling results, the planning load density for every machine based on calculated machine work time is computed:   
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Assume coefficient of job grouping on machine 
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 is equal to ratio of job quantity and number of setups
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Average values for machines of pool
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     When in Figure 6 the diagram 1 of initial calculated load and the diagram 2 of the scheduled average load density are compared, one can notice some similarity. In the diagram 3 of   group coefficient there are trends similar to trends in the diagram 2, but far more noticeable. The diagram 4 of group density, which is calculated as product of the diagram 2 and the diagram 3, is close to the diagram 1 on most sections. This fact proves that this schedule automatically groups and condenses operations on the machines of the pool with large load much more intensively than on the machines with small load. Therefore, the algorithm above can automatically determine the bottlenecks of manufacturing and ensure their optimal work.     
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                          Figure 6: Distribution of schedule parameters among machine pools


                                         1 – initial calculated coefficient of average load


                                         2 – planned load density


                                         3 – planned group coefficient


                                         4 – group load density

4 Choice of the rational planning horizon 

Let us consider change of average orders utility function depending on planning horizon value. Assume that the order kit for a single machine consists of 40 jobs, and each job may be referred to one of 12 various types. Job numbers are sorted on due date increasing.  The criterion of relative setup expenses 
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  and the criterion of average orders utility 
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may be considered as the set of criteria optimization. Assume also that all jobs may start at any time and have equal priority coefficient, and the job No. 1 is already tardy. Processing time of each job is in the interval of 1 – 3 hours, norms for setup from one job type to another one are within the limits of 0.2-0.6 hour. 
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Horizon 15 jobs
Schedule: 69, 135, 211, 4812, 14, 7, 10, 13, 15

Horizon 25 jobs
Schedule: 69, 135,19, 211, 48182012, 1410, 1524, 23, 132216, 25, 21, 17

Horizon 30 jobs
Schedule: 69, 13519, 211, 48182012, 1410, 71524, 17,
21, 13,1629,22, 25, 2330, 26, 28, 27

Horizon 35 jobs
Schedule: 69,17, 135,19, 15724, 48121820, 14103532, 2131, 211,
16,1329, 25, 2330, 22, 28, 26, 27, 33, M

Horizon 40 jobs
Schedule: 69,17, 135,19, 1524737, 48122018, 14103532, 39,28, 21140,
21,31, 16,13,29, 2536, 23,30, 22, 27, 26, 34, 38, 33






                           Figure 7: Economical schedules for various horizons


In Figure 7 the economical schedules (with small setup expenses) for different planning horizons are shown. Here the planning horizon value is determined with maximum job number for scheduling. Assume that at the start moment the machine was adjusted for jobs of type 4, which include the jobs 6, 9, 17, 38.  Scheduling calculated with theory above automatically forms job groups of any type. 

As it follows from Figure 7, at first, when the horizon is increasing, the economical sequence of jobs remains, new jobs gradually join the existing groups. For instance, the group including the jobs 6 and 9 of the type 4 exists until the horizon is less than 30 jobs. At the same time, the system automatically plans to execute the job 17 of the same type separately and essentially later. When the horizon becomes equal to 35, the economical sequence of jobs is partially changed.  The jobs 6, 9 and 17 are planned for execution in the joint group; the jobs 2, 11 are postponed, the jobs 7, 15, 24 are planned earlier.
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Figure 8: Dependence between average orders utility function and horizon value for single machine (overload)

In Figure 8 the dependence between the average orders utility function and the horizon value is shown. In this case the machine is overloaded, so   utility function is negative as completion is often tardy. Until the horizon is equal to 30 jobs, there are utility function oscillations, after 30 jobs utility function diminishes dramatically. 
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. Figure 9:  Dependence between average orders utility function and horizon value for parallel 

unrelated machines (low load)

In the next example let us consider scheduling for a shop including 6 parallel unrelated machines. Assume that one machine is of high productivity, three machines have middle productivity, and two machines have low productivity. Assume also that the shop may manufacture parts of 6 various types, and there are 75 orders for parts of these types at the moment of scheduling.


Economical schedules for each of parallel machines computed by the method above are similar to the schedule for a single machine. Such schedules include the groups of jobs for various job types. The diagram in Figure 9 is depicted for the case, when parallel machines have low load. In this case average orders utility function is positive, since job completion is not tardy. The utility oscillations are observed until number of jobs is less than 65. If the number is more, the orders utility function diminishes dramatically.
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Figure 10: Dependence between average orders utility function and horizon value for flexible job shop (overload)

   At last let us consider flexible job shop scheduling for the area of mechanical multistage processing of parts with any sequence of technological operations.   Assume that in the shop there are 9 machines of five technological pools. Assume also that the shop gets the task for 40 jobs of six various types, and some of these jobs are in various stages of processing. 


Economical schedules for each machine in the shop are similar to the schedules for the cases above. In Figure 10 the dependence between the average orders utility function and the horizon value for the shop is shown. In this Figure utility function is negative, since the shop is overloaded, and completion is often tardy.  The utility oscillations are observed until number of jobs is less than 30. If the number is more, the orders utility function diminishes dramatically.


     If diagrams in Figures 8-10 are compared, one can find that in any case the orders utility function at some (critical) horizon begins to diminish dramatically.  Apparently, scheduling for the horizon more than the critical one, has no sense. To find the critical horizon, it is expedient to use the decision support systems [11].


5  Conclusion


We have studied some aspects of scheduling based on the average orders utility 
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 criterion on the planning horizon. This criterion is non-regular as it takes into account both order tardiness and order early completion. In comparison with other known methods, this method provides automatic grouping of unique jobs on all active machines and at the same time takes into account the due date of all jobs. The method reveals the most loaded working centers automatically and provides for grouping of most jobs for these centers particularly.


For scheduling a set of Pareto-optimal solutions on planning horizon is constructed, and a user make the final decision based on this set. If a planning horizon changes, the calculated versions of the schedule change accordingly. When the horizon increases, the system at first automatically proposes schedule versions with increasing grouping of jobs to form technological batches. After the critical horizon value has been attained, the average orders utility function diminishes dramatically, and further increasing of the planning horizon is not expedient. 


In dynamic scheduling the critical horizon value may be different in each planning cycle, and it is sensible to simulate production process for critical horizon determination. If deviations of the planned production process appear, they may be corrected in the schedule and have to be taken into account in the next planning cycle. Since the average orders utility function is a criterion of schedule quality for all jobs on the planning horizon, changes of this criterion by separate schedule corrections are usually not large and, accordingly, have small impact at the schedule structure as a whole.  


In reality various additional constraints may arise in process of scheduling. For example, often it is needed to take into account the current device wear and tear, limited storage possibilities, general shipping terms, etc. In the nearest future it is planned to elaborate some solutions that correspond to listed problems. 
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